
Combinatorics in Banach space theory
PROBLEMS (Part 5)∗

PROBLEM 5.1. Let Σ be the σ-algebra of all Borel subsets of [0, 1]. Define a vector
measure µ : Σ → L1[0, 1] by µ(E) = 1E. Verify that µ is non-atomic and has bounded
variation. Next, show that the range of µ is closed, but is neither convex nor compact.
Remark. This exercise shows that the assumptions upon the target space of a given vector
measure in Theorems 11.10 and 12.11 are not superfluous. In fact, L1[0, 1] is probably the
most natural example of a Banach space which simultaneously violates all the three conditions
(reflexivity, being a separable dual space and B-convexity) appearing in those theorems.

PROBLEM 5.2. Here is another counterexample which shows that being WCG is not
a 3SP property (recall Proposition 8.6). Let D[0, 1] be the subspace of L∞[0, 1] consisting
of all real-valued functions that are right continuous and have finite left limits at every
point of [0, 1].

(i) Show thatD[0, 1] is closed in L∞[0, 1] and hence it is a Banach space when equipped
with the supremum norm.

(ii) Of course, C[0, 1] is embedded (via the inclusion operator) in D[0, 1]. Show that
the quotient space D[0, 1]/C[0, 1] is isometrically isomorphic to c0[0, 1] ' c0(c).

Hint. It is useful to define a quotient operator Q : D[0, 1]→ c0[0, 1] such that dist(f, C[0, 1]) =
‖Q(f)‖ for every f ∈ D[0, 1].
Remark. D[0, 1] is isomorphic to C(A), the Banach space of real continuous functions on the
Alexandrov double-arrow space A = [0, 1]× {0, 1} topologised by the order topology generated
by the lexicographic order. It may be shown that this space is not normal in its weak topology
(see [FHH, Theorem 14.39]), thus it cannot be weakly Lindelöf (a topological space is Lindelöf if
every open cover admits a countable subcover), because every regular Lindelöf topological space
is normal (for weak topologies on Banach spaces being Lindelöf and being normal are equivalent).
However, by the Preiss–Talagrand theorem (see [FHH10, Theorem 14.31]), every WCG Banach
space is weakly Lindelöf and therefore the exact sequence 0→ C[0, 1]→ D[0, 1]→ c0(c)→ 0
shows that being WCG is not a 3SP property.

PROBLEM 5.3. Show that if X is a B-convex Banach space, then X∗∗ is B-convex too.
Hint. You shall use the characterisation of B-convexity given in Theorem 12.3 combining it with
the fact that X∗∗ is finitely representable in X (see Definition 12.2). The last statement follows
from the Principle of Local Reflexivity (see [AK06, §11.2]).

PROBLEM 5.4. Let X and Y be normed spaces. Assume f : X → Y is a quasi-linear
map, that is, f(λx) = λf(x) and ‖f(x+y)−f(x)−f(y)‖ 6 c ·(‖x‖+‖y‖) for all x, y ∈ X
and λ ∈ R, where c <∞ is a constant. Show that for all x1, . . . , xn ∈ X we have∥∥∥∥∥∥f

 n∑
j=1

xj

− n∑
j=1

f(xj)

∥∥∥∥∥∥ 6 c
n∑
j=1

j‖xj‖.

∗Evaluation: =2pt, =3pt, =4pt
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PROBLEM 5.5. Let U = (A1, . . . , Am) be a family of finite sets. By a transversal of
U we mean any injective map f : [m] → ⋃m

j=1 Aj such that f(j) ∈ Aj for each j ∈ [m]
(that is, any one-to-one selection). Prove the Hall marriage lemma which says that there
exists a transversal for U if and only if U satisfies the following Hall’s condition:∣∣∣∣∣∣

⋃
j∈J

Aj

∣∣∣∣∣∣ > |J | for every J ⊂ [m].

Hint. There are various proofs of this classical result in the literature. For example, you may
like to use the following approach. Suppose Hall’s condition is valid and in order to prove that
U has a transversal (the converse implication is obvious) define V = (B1, . . . , Bm) to be the
collection of minimal sets Bj ⊂ Aj (j ∈ [m]) for which Hall’s condition survives. Show that
each Bj is a singleton.
Remark. Hall’s lemma, proved in 1935, has found several astonishing application in mathema-
tical analysis. For instance, it was used by G.E. Bredon to give a relatively short construction
of Haar measure on topological groups. We shall see the power of Hall’s lemma in the proof of
the Kalton–Roberts theorem.

PROBLEM 5.6. Let U = (A1, . . . , Am) be a family of finite sets and let d ∈ N. Suppose
each member of U has at least d elements and none of those elements appears in more
than d sets from U. Prove that U has a transversal.
Hint. Verify Hall’s condition. Pick any k members of U and write down all their elements allowing
repetitions. How many pairwise different elements must appear?

PROBLEM 5.7. Let F be a finite set algebra. For every function ν : F → R define
V (ν) = maxA,B∈F (ν(A)−ν(B)). Let alsoM be the set of all real valued, finitely additive
measures on F . Show that for every ν : F → R there exists µ ∈M such that

V (ν − µ) = inf
{
V (ν − λ) : λ ∈M

}
.

PROBLEM 5.8. Let K be a compact Hausdorff space and assume that a (uniformly)
bounded sequence (fn)∞n=1 ⊂ C(K) converges pointwise to f ∈ C(K). Prove that for
every ε > 0 there exist n1, . . . , nk ∈ N and λ1, . . . , λk ∈ [0, 1] such that

∑k
j=1 λj = 1 and∥∥∥∥∥∥f −

k∑
j=1

λjfnj

∥∥∥∥∥∥ 6 ε.

Hint. Assume, with no loss of generality, that f = 0 and ‖fn‖ 6 1 for each n ∈ N. For any
given ε > 0 and x ∈ K set Gx = {n ∈ N : |fn(x)| > ε/2} and define a hereditary family
G ⊂ FN by

G = {G ∈ FN : G ⊂ Gx for some x ∈ K}.
Use the contrapositive version of Pták’s combinatorial lemma by verifying that G fails to satisfy
the assertion of Lemma 9.7.
Remark. This is a specialised version of the classical Mazur theorem (see [Rud91,Theorem 3.13])
which says that for every weakly convergent sequence (xn)∞n=1 in a Banach space there exists
a strongly convergent sequence all of whose elements are convex combinations of xn’s.

PROBLEM 5.9. Prove that `∗∞ is not w∗-sequentially separable.
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Hint. `∞ is a Grothendieck space.
Remark. Note that `∗∞ is obviously w∗-separable, which follows from Goldstine’s theorem, as
`∗∞ is the bidual of the (norm) separable space `1.

PROBLEM 5.10. Prove that a complemented subspace of a Banach space with the
Dunford–Pettis property (see Definition 5.3) also has the Dunford–Pettis property. Use
this fact to show that L1[0, 1] does not contain a complemented subspace isomorphic to
`p, for every p ∈ (1,∞).
Hint. For the first assertion use the characterisation of the Dunford–Pettis property stated in
Lemma 5.4. Next, recall that L1[0, 1] has the Dunford–Pettis property (see Remark 5.6).

PROBLEM 5.11. Let F be an algebra of subsets of Ω (equivalently, any Boolean
algebra) and A be any non-empty subfamily of F . We define the intersection number
of A, denoted I(A), as the largest δ > 0 such that for every finite sequence (Aj)nj=1 ⊂ A
(repetitions are allowed) there is a set J ⊂ [n] such that |J | > δ · n and

⋂
j∈J Aj 6= ∅. In

other words,

I(A) = inf
{ 1
n

sup
x∈Ω

n∑
j=1

1Aj(x) : (Aj)nj=1 ⊂ A
}
.

Show that for every finitely additive measure m : F → [0, 1] with m(Ω) = 1 we have
infA∈Am(A) 6 I(A).

PROBLEM 5.12. Let F be an algebra of subsets of Ω and A be any non-empty sub-
family of F . We define the covering index of A, denoted C(A), as the largest δ > 0 for
which there exists a finite sequence (Aj)nj=1 ⊂ A (possibly with repetitions) such that
t1Ω 6 1

n

∑n
j=1 1Aj . In other words,

C(A) = sup
{ 1
n

inf
x∈Ω

n∑
j=1

1Aj(x) : (Aj)nj=1 ⊂ A
}
.

Let

γ(A) = inf

∑
A∈A

xA :
∑
A∈A

xA1A > 1Ω and xA > 0 for all A ∈ A

.
Show that C(A) = γ(A)−1.

PROBLEM 5.13. Let A be a non-empty subfamily of a given set algebra F . Let
also Ac be the class of complements of all members of A. Prove the duality relation
I(A) + C(Ac) = 1.

PROBLEM 5.14. Let F be a set algebra and ∅ 6= A ⊂ F . Show that

I(A) = sup
{
I(B) : B 6= ∅ is a finite subset of A

}
.

PROBLEM 5.15. Let Ω = [4], F = PΩ and consider the collection

A = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}.

Show that if A1, . . . , An are distinct members of A then there exists a set J ⊂ [n] such
that |J | > 2

3n and
⋂
j∈J Aj 6= ∅, however the intersection number I(A) equals 3

5 .
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Hint. For showing that I(A) = 3
5 use Kelley’s theorem in the following form:

I(A) = max
m∈M

inf
A∈A

m(A),

whereM stands for the family of all finitely additive measures m : F → [0, 1] with m(Ω) = 1.

PROBLEM 5.16. Prove that a Banach space X is B-convex if and only if so is X∗.
Hint. It suffices to show that if X∗ is B-convex, then so is X , because having this implication
we may simply appeal to the assertion of Problem 5.3 to get the reverse one. So, suppose X
is not B-convex. Then, according to Theorem 12.3, X contains finite-dimensional spaces En’s
which are 2-isomorphic to `1’s (i.e. dBM(En, `n1 ) 6 2). For any n ∈ N pick a norm one surjective
operator Qn : `1 → `n∞ and x1, . . . , xn ∈ `1 with Qn(xj) = ej for each j ∈ [n]. In view of
Lemma 12.7 (`1 in a L1-space), there is N > n and an N -dimensional subspace FN of `1 which
contains {x1, . . . , xn} and is 2-isomorphic to `N1 . By considering a suitable adjoint operator, try
to produce a subspace of X∗ that is 4-isomorphic to `N1 .

PROBLEM 5.17. Prove the following statement called root lemma or ∆-system lemma:
If A is an uncountable family of finite sets, then there exists an uncountable subfamily
B of A and a finite (possibly empty) set S such that A ∩ B = S for all A,B ∈ B with
A 6= B.
Hint. With no loss generality we may assume that |A| = ℵ1 and all members of A are fi-
nite subsets of the ordinal interval [0, ω1]. Show that for some n ∈ N the collection An :=
{A ∈ A : |A| = n} is uncountable and sup(

⋃
A∈An A) = ω1. For each A ∈ An write

A = {A(1), . . . , A(n)} with A(1) < . . . < A(n) and define p ∈ [n] to be the least inte-
ger satisfying sup{A(p) : A ∈ An} = ω1. Now, let

α0 =

 0, if p = 1
1 + sup

A∈An
A(p− 1), if p > 1.

and use transfinite induction to produce a sequence (Aν)06ν<ω1 ⊂ An such that

Aν(p) > max
{
α0, sup{Aα(p) : α < ν}

}
for every ν ∈ [0, ω1).

Finally, show that the collection B1 := {Aν : 0 6 ν < ω1} contains the desired subfamily B.
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